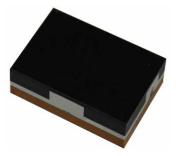
WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Contents


Ordering Information1
Outline Diagram
Specification
Characteristic Curves
Design Considerations
Basic Connection7
Recommended Layout8
Input Voltage Range8
Output Voltage Adjust8
External Capacitance
Remote Control9
Remote Sense
Over Temperature Protection10
Output Over Voltage Protection
Series and Parallel Operation10
Thermal Consideration11
Safety Consideration11
ESD Control
Quality Statement
Delivery Package Information11
Contact Information

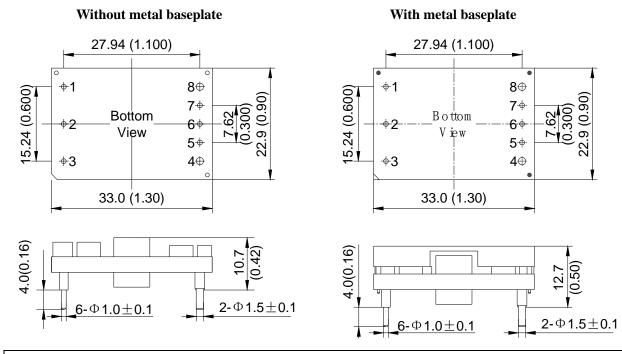
Features

- Industry Standard Sixteenth-brick
 Without metal baseplate: 33.0×22.9×10.7mm
 With metal baseplate: 33.0×22.9×12.7mm
- ♦ Rated Power 75^W
- Ultra High Power Density:
 11W/cm3 (Without metal baseplate)
 9.2W/cm3 (With metal baseplate)
- Input Under Voltage Protection (14V to 18V turn off)
- Positive Logic Control (3.5V to 15.0V or floating turn on)
- Output Over Voltage Protection, auto-recovery (13.8V to 18V)
- Output Voltage Adjust Range:
 -20%~+10%V_{o,nom} of the rated output voltage
- Output Short-time Short-circuit Protection
- ♦ High Efficiency,92% typ. (48V,full load)
- ◆ 1500Vdc Isolation Voltage
- Operation Ambient Temperature: -40 ℃ to +85 ℃
- Over Temperature Protection: 115 \mathcal{C} (Without metal baseplate) ,100 \mathcal{C} (With metal baseplate)
- Applications: Telecom / Datacom system equipments, Railway & Rail transit ,Industrial control equipments and Instrument.

Without metal baseplate

With metal baseplate

Ordering Information


See Contents for individual product ordering numbers.

Suffix	Description	Ordering No.
	Shown as the specification	WSD75-48S12
Р	Negative Logic Control: $3.5V \sim 15V$ or floating, turn off; $0 \sim$ 0.5V, turn on	WSD75-48S12P
В	Positive Logic Control, With metal baseplate	WSD75-48S12B
PB	Negative Logic Control, With metal baseplate	WSD75-48S12PB

WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Outline Diagram

Pin de	finition:						
Pin	Symbol	Function					
1	-Vin	Negative Input					
2	CNT	Remote Control, turn on/off the converter. Output voltage on when CNT floating or high level applied					
3	+Vin	Positive Input					
4	+Vo	Positive Output					
5	+S	Positive Remote Sense, connected to $+V_0$ pin when not in use.					
6	TRIM	Output Voltage Trim, voltage be trimmed up or down by applying external resistor connected to +S or -S output					
7	-S	Negative Remote Sense, connected to $-V_0$ pin if not used					
8	-Vo	Negative Output					
Notes:	Notes: All dimensions in mm(inches) Tolerances:X.X±0.5(X.XX±0.02) X.XX±0.25(X.XXX±0.010)						

Specification

Unless otherwise specified, all tests are at room temperature, standard atmosphere, pure resistive and load basic connection.

Inpu	ıt	Symbol	Min	Тур	Max	Unit	Conditions
Input Voltage		V _{in}	18	48	75	V	I ₀ :0~6.25A
Maximum transient input voltage		-	-	Ι	100	V	Transient < 100ms
Input Cu	urrent	I _{in}	-	-	4.9	А	V _{in,min} , I _{o,max}
Positive	On	_	3.5	_	15.0	V	Refer to -V _{in} ; Turn on when CNT floating.
Logic Control	Off	_	0	_	0.5	V	Refer to -V _{in}

Technical SpecificationV1.0 2023.04

WSD75-48S12 DC-DC Converters

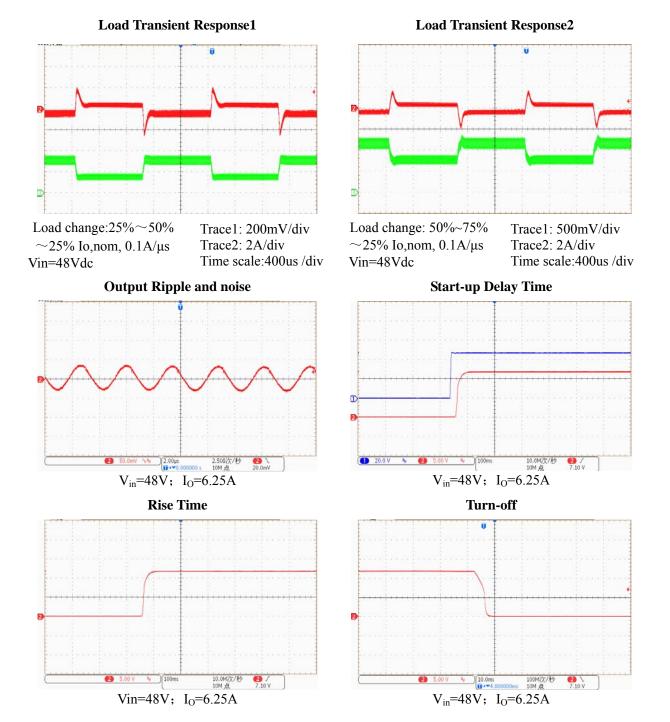
Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Negative	On	_	0	_	0.5	V	Refer to -V _{in}
Logic Control	Off	_	3.5	Ι	15.0	V	Refer to -V _{in} ; Turn off when CNT floating.
Start-up Delay Time		T _{delay}	Ι	50	I	ms	—
Under Voltage Threshold		V _{UVLO}	14	-	18	V	—
Under Voltage Protection Hysteresis		$ riangle V_{UVLO}$	1	Ι	3	V	—
Input reflected ripple current		-	-	50	100	mA	A 12µH/7A Inductor (20MHz) in series
No-load input current		_	_	75	150	mA	V _{in,nom} , I _o =0A
Standby inp	ut current	_	_	3	_	mA	_

Out	put	Symbol	Min	Тур	Max	Unit	Conditions
Output V	Voltage	Vo	11.76	12.00	12.24	V	—
Output (Current	I _{O,nom}	_	_	6.25	А	V _{in} :18~75V
Output	Power	_	_	_	75	W	V _{in} :18~75V
Output Volt Ran	•	V _{trim}	9.6	Ι	13.2	V	$I_0 \le 6.25 A, P_0 \le 75 W$
Line Reg	gulation	S_V	Ι	I	±0.3	% V ₀	V _{in} :18~75V, I _{o,max}
Load Rea	gulation	SI	-	-	±0.5	% V _O	V _{in,nom} , I ₀ :0~6.25A
Output Over Voltage Protection Set Point		V _{ov,set}	13.2	Ι	18.0	V	V _{in,nom} , P _o ≤75W Hiccup mode
Output Over Current Protection Range		I _{O,lim}	6.56	Ι	11.9	А	V _{in} :18~75V, V _{o,nom}
Output She Protee		short-time short-circuit protection, auto-recovery				auto-recovery	
Peak to Peak Ripple and Noise		$ riangle V_{pp}$	-	120	240	mV	20MHz bandwidth, a 47µF aluminum electrolytic capacitor and a 1µF ceramic capacitor are applied at output
Rise	Гime	T _{rise}	-	25	_	ms	V _{in,nom} , I _{o,max}
Capacitiv	ve Load	Co	0	-	2000	μF	pure resistive load
Remote Sense Compensation Range		V _{sense}	0	Ι	0.6	V	+S and -S twisted Pair, length is less than 20cm
Output Overshoot		V _{TO}	0	-	1.2	V	—
Load	Recovery Time	t _{tr}	_	_	300	μs	25%~50%~25%I _{o,nom} or
Transient	Voltage Deviation	$ riangle V_{tr}$	-	-	±600	mV	50%~75%~50% I _{o,nom} ; 0.1A/µs

Ger	neral	Symbol	Min	Тур	Max	Unit	Conditions
Effic	iency	η	_	90	92	%	V _{in} =48V, I _{o,nom}
Isolation Resistance	Input ~ Output Input ~ substrate Output ~ substrate	R _{iso}	10	-	_	ΜΩ	
Isolation Voltage	Input ~ Output	V _{iso}	1500	_	Ι	Vdc	—

WSD75-48S12 DC-DC Converters


Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input $18V \sim 75V$, O	utput 12	<u>2V/6.25A</u>	., Industi	ry Standa	ard Sixte	enth-brick
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1050	-	-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			500	Η	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Switching frequency	—	250	300	350	kHz	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MTBF	-	_	2×10^{6}	_	h	BELLCORE TR-332
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Storage Temperature	-	-55	-	+125	°C	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Temperature Coefficient	ST	_	±0.1	±0.02	%∕°C	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	-40	_	+100	°C	Without metal baseplate, see derating curve 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-40	Η	+100	$^{\circ}\mathrm{C}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	-40	_	+85	Ĉ	With metal baseplate, see
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		R _{0CA}		14.7		°C/W	Natural convection
(Without metal baseplate). R_{0CA} $ 9$ $ C/W$ $200LFM$ convection R_{0CA} $ 7.3$ $ ^{\circ}C/W$ $300LFM$ convection R_{0CA} $ 6.3$ $ ^{\circ}C/W$ $400LFM$ convectionThermal resistance See derating curve 6 (With metal baseplate). R_{0CA} $ 9.6$ $ ^{\circ}C/W$ $Natural convectionR_{0CA} 6.3 ^{\circ}C/WNatural convectionR_{0CA} 6.3 ^{\circ}C/WNatural convectionR_{0CA} 6.3 ^{\circ}C/W100LFM convectionR_{0CA} 6.3 ^{\circ}C/W200LFM convectionR_{0CA} 6.3 ^{\circ}C/W100LFM convectionR_{0CA} 6.3 ^{\circ}C/W200LFM convectionR_{0CA} 6.3 ^{\circ}C/W100LFM convectionR_{0CA} 6.5 ^{\circ}C/W200LFM convectionR_{0CA} 6.5 ^{\circ}C/W200LFM convectionR_{0CA} 7.6200LFM convectionR_{0CA} 6.5 ^{\circ}C/W200LFM convectionR_{0CA} 7.6R_{0CA} 6.5 ^{\circ}C/W200LFM convectionR_{0CA} 7.6R_{0CA} 1100 ^{\circ}C -$			_	11.3		°C/W	100LFM convection
baseplate). R_{0CA} 7.3°C/W300LFM convection R_{0CA} 6.3°C/W400LFM convectionThermal resistance R_{0CA} 9.6°C/WNatural convectionSee derating curve 6 R_{0CA} 7.8°C/W100LFM convection R_{0CA} 6°C/W200LFM convection R_{0CA} 6°C/W300LFM convection R_{0CA} 5.1°C/W300LFM convection R_{0CA} 4.3°C/W300LFM convection R_{0CA} 4.3°C/W300LFM convection R_{0CA} 4.3°C/W400LFM convection R_{0CA} 115-°CSee Over TemperatureProtection Reference T_{ref} -110-°C $Portection pointT_{ref}-100-°C(With metal baseplate).\Delta T_{ref}-10-°COver Temperature\Delta T_{ref}-10-°CProtection Hysteresis\Delta T_{ref}-10-°CVibrationSine, Frequency: 10Hz-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendiculdirectionsHand SolderingMaximum soldering Temperature < 425°C, and duration < 5s$		$R_{\theta CA}$	_	9		°C/W	200LFM convection
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$R_{\theta CA}$	_	7.3		°C/W	300LFM convection
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	busepiate).	R _{0CA}	_	6.3		°C/W	400LFM convection
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	9.6		°C/W	Natural convection
See derating curve 6 (With metal baseplate). $R_{\theta CA}$ 6 $^{\circ}C/W$ 200LFM convection $R_{\theta CA}$ 5.1 $^{\circ}C/W$ 300LFM convection $R_{\theta CA}$ 4.3 $^{\circ}C/W$ 400LFM convectionOver Temperature Protection Reference Point (Without metal baseplate) T_{ref} -115- $^{\circ}C$ Over-temperature protection point (With metal baseplate) T_{ref} -100- $^{\circ}C$ See Over Temperature Protection considerationOver-temperature protection point (With metal baseplate). T_{ref} -100- $^{\circ}C$ See Over Temperature Protection considerationOver Temperature Protection Hysteresis ΔT_{ref} -10- $^{\circ}C$ See Over Temperature Protection considerationWibrationSine, Frequency: 10Hz-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendicul directionsSine, Frequency: 10Hz-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendicul directionsHalf sine, peak acceleration:300m/s², duration:6 ms ; continuous 6 times of pulse in each of 3 perpendicular directionsHand SolderingMaximum soldering Temperature < 425 $^{\circ}$ C, and duration < 5s	Thermal resistance		_	7.8		°C/W	100LFM convection
Over Temperature Protection Reference Point (Without metal baseplate)Tref-4.3-C/W400LFM convectionOver Temperature protection point (With metal baseplate)Tref-115-°CSee Over Temperature Protection considerationOver-temperature protection point (With metal baseplate).Tref-100-°CSee Over Temperature Protection considerationOver Temperature Protection Hysteresis ΔT_{ref} -10-°CSee Over Temperature Protection considerationVibrationSine, Frequency: literctions101/2-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendicul directions300m/s², duration:6 ms ; continuous 6 times of pulse in each of 3 perpendicular directionsHand Soldering Wave SolderingMaximum soldering Temperature < 425°C, and duration < 5s		$R_{\theta CA}$	_	6		°C/W	200LFM convection
$\begin{array}{ c c c c c c c }\hline Over Temperature & T_{ref} & - & 115 & - & ^{\circ}C \\ \hline Point (Without metal baseplate) & & & & & \\ \hline Over-temperature & & & & \\ \hline Over-temperature & & & & \\ \hline Over-temperature & & & \\ \hline Over-temperature & & & \\ \hline Over Temperature & & \\ \hline Over$	(With metal baseplate).	$R_{\theta CA}$	_	5.1		°C/W	300LFM convection
$\begin{array}{ c c c c c } \hline Over Temperature \\ Protection Reference \\ Point (Without metal baseplate) \\ \hline \\ \hline \\ Over-temperature \\ protection point \\ (With metal baseplate). \\ \hline \\ \hline \\ Over Temperature \\ Protection Hysteresis \\ \hline \\ \hline \\ \hline \\ Over Temperature \\ Protection Hysteresis \\ \hline \\ \hline \\ \hline \\ Vibration \\ \hline \\ \\ Shock \\ \hline \\ Half sine, peak acceleration:300m/s2, duration:6 ms ; continuous 6 times of pulse in each of 3 perpendicular directions \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ Weight \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$		R _{0CA}	_	4.3		°C/W	400LFM convection
Over-temperature protection point (With metal baseplate). T_{ref} $ 100$ $ ^{\circ}C$ Protection considerationOver Temperature Protection Hysteresis $\bigtriangleup T_{ref}$ $ 10$ $ ^{\circ}C$ $Protection considerationVibrationSine, Frequency: 10Hz-55Hz, Amplitude: 0.35mm, 30 min in each of 3 perpendiculdirectionsSine, Frequency: 10Hz-55Hz, Amplitude: 0.35mm, 30 min in each of 3 perpendiculeach of 3 perpendicular directionsShockHalf sine, peak acceleration: 300m/s^2, duration: 6 ms ; continuous 6 times of pulse ineach of 3 perpendicular directionsHand SolderingMaximum soldering Temperature < 425°C, and duration < 5s$	Protection Reference Point (Without metal		_	115	_	Ĉ	See Over Temperature
Protection Hysteresis $\bigtriangleup I_{ref}$ -10-CVibrationSine, Frequency: 10Hz-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendicul directionsSine, Frequency: 10Hz-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendicul ach of 3 perpendicular directionsShockHalf sine, peak acceleration:300m/s², duration:6 ms ; continuous 6 times of pulse in each of 3 perpendicular directionsHand SolderingMaximum soldering Temperature < 425°C, and duration < 5s	protection point (With metal baseplate).	T _{ref}	-	100	_	°C	
VibrationdirectionsdirectionsHalf sine, peak acceleration:300m/s², duration:6 ms ; continuous 6 times of pulse in each of 3 perpendicular directionsHand SolderingMaximum soldering Temperature < 425°C, and duration < 5s		$ riangle T_{ref}$	-	10	-	°C	
ShockHalf sine, peak acceleration:300m/s², duration:6 ms ; continuous 6 times of pulse in each of 3 perpendicular directionsHand SolderingMaximum soldering Temperature < 425 °C, and duration < 5s	Vibration	Sine, Frequency: 10Hz-55Hz, Amplitude:0.35mm, 30 min in each of 3 perpendicula directions					
Hand SolderingMaximum soldering Temperature < 425° C, and duration < 5sWave SolderingMaximum soldering Temperature < 255° C, and duration < 10s	Shock	Half sine, peak acceleration:300m/s ² , duration:6 ms ; continuous 6 times of pulse in					
Weight — — — — — — — — — — — g without heatsink	Hand Soldering						
Weight	Wave Soldering	Maximun	n soldering	Temperatur	e < 255 °C ,	and durati	ion < 10s
- - 33 - g with heatsink	Weight		_		—	g	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			33	—	g	with heatsink

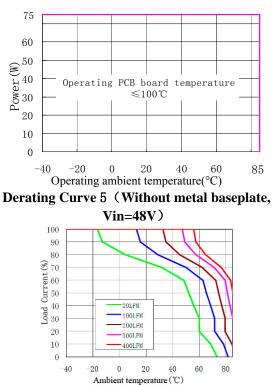
WSD75-48S12 DC-DC Converters

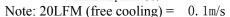
Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Characteristic Curves

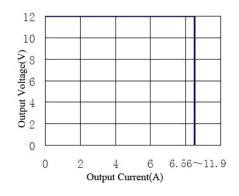
Technical SpecificationV1.0 2023.04

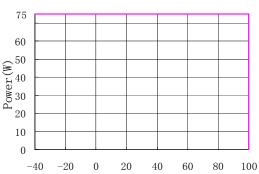
Derating Curve 2 (With metal baseplate)

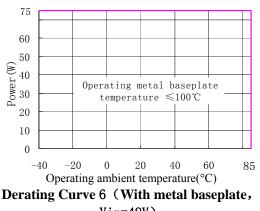

WSD75-48S12 DC-DC Converters

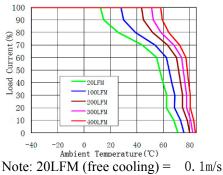

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Derating Curve 1 (Without metal baseplate)

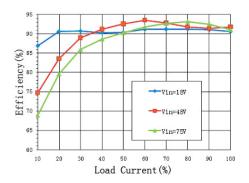





Volt-ampere characteristic curve



Operating metal baseplate temperature (°C)

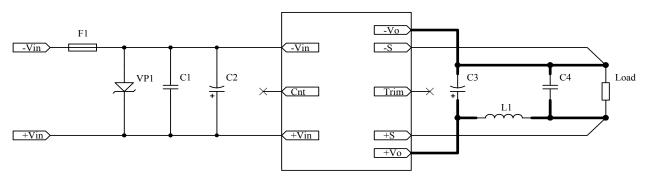

Derating Curve 4 (With metal baseplate)

Vin=48V)

Typical efficiency curve

WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

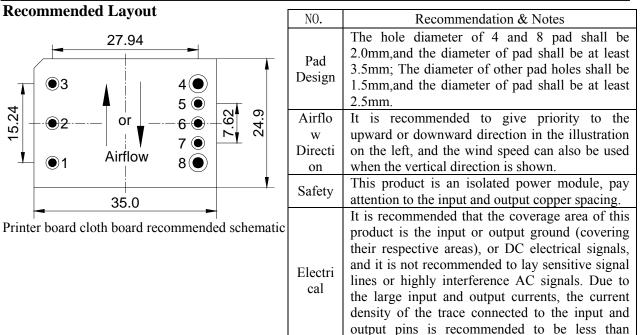

Concentrate:

1. When the product is installed, attention should be paid to the flow direction of hot air to ensure the smooth exchange of heat generated by loss and ambient temperature. It can be seen from the above derating curve 3 and derating curve 4 that as long as the PCB board temperature (Without metal baseplate) or the substrate temperature (With metal baseplate) does not exceed, the product can still work normally at full load within the required ambient temperature range (-40~85 °C). Under the condition of a certain ambient temperature, customers can improve the heat dissipation conditions by appropriately increasing the wind speed (Without metal baseplate or With metal baseplate) or further installing a heat sink on the heat dissipation 100° C substrate (With metal baseplate), thereby expanding the load capacity of derating curve 5 and derating curve 6.

2. Derating curves 5 and 6 are derating curves under different wind speeds of the non-heat dissipation substrate and the heat dissipation substrate (the pins are non-soldered mode). For customer thermal design reference, in actual use due to the application environment of the module, layout and wind speed and other factors are different. Please combine the actual use and give sufficient derating in the thermal design, which can not only effectively avoid the module from entering the over-temperature protection state, but also extend the service life of the module.

Design Considerations

Basic Connection


Notes: The basic connection indicates the basic requirements that the power module can provide rated output voltage and rated power only. Please refer the instruction followed for further information.

Parameter description:

Part No.	Components	Part No.	Components
F1	12~15A insurance	С3	-40°C electrolytic capacitor 100uF/25V
VP1	1.5KE75A		0.22~0.33uH and ≥6.25A are
C1	Ceramic capacitor 2.2uF/100V Note: The capacitor is not used in the values in the performance parameters	L1	recommended for applications that require lower ripple Note: The value in the performance parameters does not use this inductor
C2	-40°C electrolytic capacitor 100uF/100V	C4	47uF/25V ceramic capacitors

WSD75-48S12 DC-DC Converters

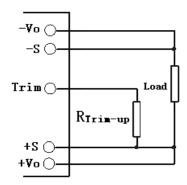
Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

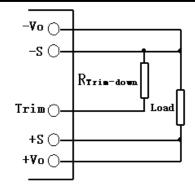
Input Voltage Range

The input voltage range of the converter is 18V to 75V. The continuous input voltage s not allowed to exceed 80V under any conditions, and exceeding the specified range will result in failure of the converter. It is recommended to connect a capacitance of 100μ F or more at input to suppress the pulse spike from the input voltage. The input impedance of the converter looks like a negative resistor, which can interact with the reactance of the power bus (including any filter elements that have been added to the input of the converter), causes an unstable condition. Depending on the internal transformer's impedance, the external impedance should be required to have low source impedance. When source impedance of the power bus is high, the output voltage or ripple may be unstable.

The method to determine whether the impedance of the power bus too high or not is to decrease the converter's input voltage from higher to lower gradually, If input lower voltage to the converter which works normally when the input voltage is high, then the output voltage of the converter can decrease or be unstable and it can return to normal after reducing the load current, it will be considered the impedance too large. Tht method for further confirmation is to connect a 100 uF/100V electrolytic capacitor to the module power pin in parallel after the module power is powered off (Individual cases may require a 2.2uF/100V ceramic capacitor to be connected between the electrolytic capacitor and the module pin), if the output getting better, it will be sure that the impedance is too large.

Output Voltage Adjust


The converters have an Output Voltage adjust pin (Trim). This pin can be used to adjust the output voltage above or below Output voltage initial setting. The maximum value of the trimmed up is 10%, even +S and -S pins are used to compensate the voltage simultaneously, the sum of the trimmed up and the compensation should not be more than 10%, or the characteristics will not be assured in compliant with the specification, even the over voltage protection may be triggered. The output power can not exceed 75W at increased output voltages, and the output current can not exceed 6.25A. When the trim pins are not used, they should be floated. External circuit is connected as the figure shown, the resistance is calculated as the formula below, please note


that the formula will be invalid when $R_{Trim-up}$, $R_{Trim-down}$ are used simultaneously, users adjust the value based on the resistance applied.

Technical SpecificationV1.0 2023.04

WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Connection of Trimming Up

Connection for Trimming Down

Resistance for trimming up :

$$R_{Trim-up} = \left(\frac{5.11 \times Vo(100(\%) + \Delta(\%))}{1.225 \times \Delta(\%)} - \frac{5.11 \times 100(\%)}{\Delta(\%)} - 10.22\right) (k \Omega)$$

$$R_{Trim-down} = \left(\frac{5.11 \times 100(\%)}{\Delta(\%)} - 10.22\right) (k \Omega)$$

Resistance for trimming down:

Vo: rated output voltage, 12V;

 $R_{Trim-up}$, $R_{Trim-down}$: Resistance for trimming up or down, k Ω ;

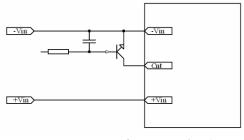
 \triangle (%): Change rate, divide output voltage by rated output voltage

For example, if the output voltage is 9.6V after adjusting 20% down, then \triangle (%) = [(12-9.6)/12]×100% = 20%, which is brought into the equation

Down-regulation resistance: $5.11 \times 100\%/20\% - 10.22 = 15.33$ (k Ω), you can actually take $15k\Omega$ resistance;

If the output voltage is 13.2V after adjusting the output voltage by 10%, \triangle (%) = [(13.2-12)/12]×100%=10%, which is brought into the formula

Up-regulation resistance: $[(5.11 \times 12(100\% + 10\%))/1.225 \times 10\%]$ - $[(5.11 \times 100\%)/10\%]$ -10.22=489.3 (k Ω), the actual $487k\Omega$ resistor can be taken;


External Capacitance

Unless special purpose (i.e. prolonging hold-up time, input impedance matching), the recommended input filter's capacitance ranges 68μ F \sim 220 μ F, which not only offers a stable system, and reduces the cost, but also lessens the inrush current when the power supplies.

When larger capacitance is required, a circuit of suppressing the inrush current is recommended when the regulator start-up and a discharge circuit is recommended when the output dropped, ensuring the reliability and safety of other equipments in the system.

Remote Control

This function is obtained by applying the correct control level (or floating, high-impedance state) to the CNT pin. Positive logic remote control and negative logic remote control function is optional, WSD75-48S12 is a positive logic control product, when the applied level is $3.5 \sim 15$ V or floating when the module power output is on, when the applied level is $0 \sim 0.5$ V, the module power output is off. When the low level is applied, the external output current of the module CNT is less than 2mA, and the input current of the module

Temperature Reference Point A

CNT pin is less than 2mA when the high level $(3.5 \sim 15V)$ is applied. Due to the logic comparator is semiconductor integrated chip with low resistance to surge, care should be taken to prevent CNT from surge, like application of TVS. When the pin is left floating, 1.25V \sim 2.5V voltage

to prevent CNT from surge, like application of TVS. When the pin is left floating, $1.25V \sim 3.5V$ voltage appears on the pin.

WSD75-48S12P is provided with negative logic remote control. It has the same characteristic as

WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

WSD75-48S12, except control logic. When the level applied is less than 0.5V, the converter will be turned on, When the level is higher than 3.5V and less than 15V or be left floating, the converter will be off. Like positive logic control converters, care should be taken to prevent CNT from surge. When the pin is left floating, the voltage of the pin is $2.5V \sim 12.5V$.

In some applications, extra controls will be designed for the converter in user's PCB, such as output short circuit protection, over voltage protection, under voltage protection, synchronous control to the converter output voltage, and so on, remote control will give you help. The controls can be achieved by external circuit applied to the CNT pin.

When the signal from the system is beyond $3.5V \sim 15V$, or it can be enabled only within a very narrow control level, the aux circuit will be required. Please contact us for more information.

Remote Sense

The remote sense can be used to compensate for the voltage drop between the output pins of the converter and the load input pins by $+S_x$ -S pins. The +S and -S pins should be connected to the input pins of the load respectively. The remote sense circuit will compensate for up to 10% voltage drop between the sense voltage and the voltage at the output pins. If the remote sense is not needed, the -S should be connected to -Vout and +S should be connected to +Vout.

The anti-interference design should be considered when the $+S_{x}$ -S pins are connected to the pins to be compensated. The $+S_{x}$ -S traces should be located close to a ground trace or ground plane, and the area they surrounded should be minimized (just for electrical isolation); If cable connection presents, twisted pair wires should be used, EMI core are equipped with the twisted pair wires to reduce common mode noise when necessary, the sense leads should not be longer than 200mm, or the system characteristics may not be assured.

The sense leads only can carry very little current, and are not used for converter power output. Care should be taken in operation to avoid damaging the converter.


Over Temperature Protection

The converters are protected from thermal overload by an internal over temperature shutdown circuit. When the PCB temperature (reference point A, see the figure) exceeds the temperature trig point (110°C).the OTP circuit will cut down output power. The converter will stop until safe operating temperature is restored. Hysteresis temperature between OTP trig point and restart is approx 10°C. Time between OTP and restart is dependent on cooling of DC/DC converter.

Output Over Voltage Protection

The converter is designed with clamped over voltage protection, when output voltage exceeds 115% to 140% of the rated output voltage (the set point is between 115% to 140%, there is the difference based on the specific parameters, but not beyond the range), the output voltage will be clamped. If the output voltage returns to normal, the converter works normally.

Location of heatless substrate test points Series and Parallel Operation

Test point location with thermal baseplate

The converters should not be paralleled directly to increase power, but they can be paralleled each other through o-ring switches or diodes. Make sure that every converter's maximum load current should not exceed the rated current at anytime if they are paralleled without using external current sharing circuits.

The converters can operate in series. To prevent against start-up failure due to start up time difference, SBD with low voltage difference can be paralleled at the output pins(SBD negative terminal connect to the positive pin of the output) for each converter.

WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Thermal Consideration

The power module can work at a variety of ambient temperatures, but ensuring adequate cooling can improve its working reliability and life, and the heat generated by the loss of the power module can be released by radiation, convection and conduction.

For example, (no heat dissipation substrate) how to select the minimum wind speed required, if the power module works at an ambient temperature of 80°C, Vin=48V, the output current is 4A, according to the above derating curve 5, the minimum wind speed required is about /s.2.0m

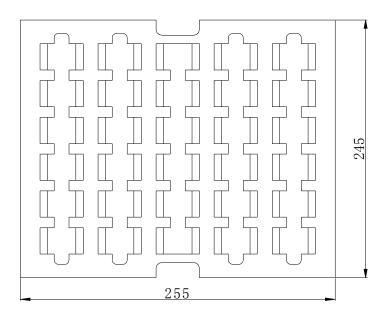
For example, (with heat dissipation substrate, without additional heat sink) how to select the required minimum wind speed, if the power module works at an ambient temperature of 50 °C, Vin=48V, the output current is 4A, according to the above derating curve 6, the minimum wind speed required is about 0.1m/s (natural wind).

Safety Consideration

The converter, as a component for the end user, should be installed into the equipment, and all the safety considerations are achieved under certain condition. It is required to meet safety requirements in system design. The converter output is considered SELV, and the expected input is considered TNV2, the primary to secondary is basic insulation to EN60950. The maximum operating temperature for PCB is 150 $^{\circ}$ C.

To avoid fire and be protected when short circuit occurred, it is recommended that a fast blow fuse with rating 2.5 to 3 times of converter's continuous input peak current is used at the input terminal.

ESD Control


The converters are processed and manufactured in an ESD controlled environment and supplied in conductive packaging to prevent ESD damage from occurring before or during shipping. It is essential that they are unpacked and handled using an ESD control procedures. Failure to do so affects the lifetime of the converter.

Quality Statement

The converters are manufactured in accordance with ISO 9001 system requirements, and are monitored 100% by auto-testing system, 100% burn in.

The warranty for the converters is 5-year.

Delivery Package Information

WSD75-48S12 DC-DC Converters

Input18V~75V, Output 12V/6.25A, Industry Standard Sixteenth-brick

Excel Accessed for	
ARCCAR AR	

Package material is multiple wall corrugated, internal material is anti-static foam, it's surface resistance is from $10^5 \Omega$ to $10^{12} \Omega$.

Substrate module without heat dissipation: small package is $3 \times 30=90$ pieces per box, weighing about 1.8kg; $4 \times 90=360$ pieces per large package, weighing about 8.0kg. Module with heat dissipation substrate: small package for $3 \times 30=90$ pieces per box, weight about 3.15kg; $4 \times 90=360$ pieces per large package, weighing about 13.5kg.

Contact Information

Anhui Hesion Trading Co.,Ltd. & Beijing Yihongtai Technology Dev.Co.,Ltd

TEL: +86-551-65369069,65369067 Email: alecz@ahhesion.com Backup:alecz@126.com

www.ahhesionpower.com